アマル・アル・サバヒ
必須アルコールの分析には、多くの標識試薬が安価に入手可能です。しかし、これらの試薬には、毒性、感受性および選択性の欠如、溶解性の低さ、および高額な費用などのいくつかの欠点があります。蛍光複素環式化合物を標識として使用することは、科学においてますます専門外になっています。ピラゾリンは、原子組成が C3H6N2 の複素環式化合物です。ピラゾリンは、生体有機原子の検出および画像化に適した興味深い光物理的特性を持つ有名な複素環です。ピラゾリンは、広く研究されている重要な 5 員環窒素複素環です。この環は非常に安定しており、科学者は環にさまざまな補助的なバリエーションを作成するよう促されました。これにより、鎮痛、鎮痛、抗菌、抗癌、活性化など、さまざまな薬理作用を持つ特定のピラゾリンの開発が促進されました。ピラゾリンは、5 員環複素環化合物の 1 つで、関連するさまざまな薬理作用により注目を集めています。ピラゾリンは、環内に 2 つの連続した窒素原子を持ち、環内二重結合が 1 つしかない 5 員環複素環で、自然界に必須です。これらの色素の用途は、光線力学的疾患の治療、発光ダイオード、髪の毛の発光や照明など、さまざまな分野にわたります。しかし、最近では、アミノ酸やシナプスのプレセグメント誘導体化の潜在的な可能性として評価されています。この調査の目的は、最近追加されたピラゾリン、4-(1-(4-トリフルオロメチル)フェニル)-4,5-ジヒドロ-3-(ナフチル)-1H-ピラゾール-5-イル)安息香酸 (TFNPB) が必須アルコールの名称として適切かどうかを評価し、さまざまな格子でこれらの分析対象物を評価する事前セグメント誘導体化技術を構築することです。
The pyrazoline core is an omnipresent element of different mixes having numerous pharmacological and physiological exercises and hence they are valuable materials in tranquilize inquire about. It was accounted for in the writing that distinctive subbed 2-pyrazolines have antimicrobial, calming, pain relieving, antipyretic, stimulant, antitubercular, antiamoebic, anthelmintic, anticonvulsant, antihypertensive, antidiabetic, antitumor, hostile to HIV, neighborhood sedative, cancer prevention agent, insecticidal and sedating exercises Compounds with alkane and ester bunches at pyrazolinyl spiros were examined for their antibacterial exercises against both erythromycin-defenseless and erythromycin-safe microscopic organisms. All the subsidiaries were found to have preferred antibacterial exercises over erythromycin An and clathriamycin against S.aureus strains, and with practically proportional bioactivities against S.pneumonia and H.influenza strains. Among the C-12 pyrazolinyl spiro ketolides, mixes with ester substituents showed preferable antibacterial exercises over those of mixes.
Fluorescence finders are likely the most touchy among the current present day HPLC locators. It is conceivable to recognize even a nearness of a solitary analyte atom in the stream cell. Ordinarily, fluorescence affectability is 10 - multiple times higher than that of the UV identifier for solid UV engrossing materials. Fluorescence locators are unmistakable and specific among the others optical identifiers. This is ordinarily utilized as a bit of leeway in the estimation of explicit fluorescent species in tests. At the point when mixes having explicit utilitarian gatherings are energized by shorter frequency vitality and produce higher frequency radiation which called fluorescence. As a rule, the discharge is estimated at right edges to the excitation. Generally about 15% of all mixes have a characteristic fluorescence. The nearness of conjugated pi-electrons particularly in the fragrant segments gives the most serious fluorescent movement. Likewise, aliphatic and alicyclic mixes with carbonyl gatherings and mixes with profoundly conjugated twofold bonds fluoresce, however normally to a lesser degree. Most unsubstituted fragrant hydrocarbons fluoresce with quantum yeld expanding with the quantity of rings, their level of buildup and their basic unbending nature.
Fluorescence force relies upon both the excitation and outflow frequency, permitting specifically distinguish a few segments while smothering the discharge of others. The recognition of any segment fundamentally relies upon the picked frequency and in the event that one part could be identified at 280 ex and 340 em., another could be missed. A large portion of the advanced finders permit quick switch of the excitation and discharge frequency, which offer the likelihood to distinguish all part in the blend.
Methodology & Theoretical Orientation:
TFNPB was blended by the regular technique, which includes two stages, an aldol buildup response between acetyl-naphthalene and 4-formylbenzoic corrosive followed by Michael expansion of the phenyl-hydrazine. The photophysical properties including assimilation, outflow, and lifetime estimations have been concentrated in various solvents. Essential alcohols were then derivatized by this reagent, and LC-MS was utilized to survey the delivered subordinates. The derivatization system was streamlined, and the test of alcohols by this strategy was approved. Fluid chromatography–mass spectrometry (LC-MS) is a logical science strategy that consolidates the physical partition capacities of fluid chromatography (or HPLC) with the mass investigation abilities of mass spectrometry (MS). Coupled chromatography - MS frameworks are famous in substance examination in light of the fact that the individual capacities of every procedure are upgraded synergistically. While fluid chromatography isolates blends with different segments, mass spectrometry gives auxiliary character of the individual segments with high atomic explicitness and discovery affectability. This pair strategy can be utilized to dissect biochemical, natural, and inorganic mixes normally found in complex examples of ecological and organic starting point.
Notwithstanding the fluid chromatography and mass spectrometry gadgets, a LC-MS framework contains an interface that effectively moves the isolated parts from the LC section into the MS particle source. The interface is vital in light of the fact that the LC and MS gadgets are on a very basic level inconsistent. While the portable stage in a LC framework is a pressurized fluid, the MS analyzers usually work under high vacuum with 10−6 torr/10−7 Hg. In this way, it is beyond the realm of imagination to straightforwardly siphon the eluate from the LC section into the MS source. Generally, the interface is a precisely straightforward piece of the LC-MS framework that moves the greatest measure of analyte, evacuates a critical segment of the portable stage utilized in LC and jam the substance personality of the chromatography items (artificially inactive). As a prerequisite, the interface ought not meddle with the ionizing proficiency and vacuum states of the MS framework.
Findings:
TFNPB は、高い蛍光強度と量子収率を含む優れた光物理的特性を示します。アセトニトリル中で 460 nm の可視領域で発光します。低温で、短い応答時間でヒドロキシル バンドルを迅速に結合するために使用します。アルコール バンドルは、水中の 75% ACN を使用して C8 サンプルで非常に孤立したピーク (目標 μ1.5) を示します。生成されたバンドルは、室温で 1 か月以上安定でした。1.25-94 μmol L-1 (R2≥0.991) の範囲で 4 つのアルコールについて優れた相関が得られました。すべての妥当性の数値が決定され、作成された手法は重要なアルコールの定量分析に承認されました。
バイオグラフィー:
アマル・アル・サバヒは、1996 年にスルタン・カブース大学 (SQU) で科学教育の理学士号を取得し、2003 年に SQU 理学部化学学科で化学の理学修士号を取得しました。現在、同学科で化学の博士号取得を目指しています。化学教師として 10 年間、教育研究者として 6 年間勤務しました。SQU では研究室のインストラクターとして 3 年間勤務しました。